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Abstract:

Insulin is a hormone which attaches to cell receptors, allowing glucose to leave the blood stream
and provide energy to cells. Type I diabetes results when the pancreas does not produce enough
insulin to assist the uptake of glucose into cells. In the case of type II diabetes, cell receptors
have decreased insulin sensitivity and cannot use insulin to transport glucose into cells properly.
Both conditions present the danger of causing unhealthy glucose levels in the blood stream and
are treated with insulin injection therapy to trigger glucose uptake in the cells.

A mathematical model of natural glucose and insulin control in the body allows for a deeper
understanding of the malfunctions that cause diabetes, as well as a more quantified approach to
regulating blood glucose levels with insulin injection therapy. Cobelli et al. presented a
simulation model which describes the kinetics of glucose digestion and absorption that occur
after a meal.’

First, this research seeks to extend the Cobelli model of glucose and insulin dynamics to include
both long and short-acting insulin inputs currently used to treat diabetic patients. Secondly, the
research will introduce a personalized approach to treatment by adapting the combined model
parameters over time in response to observed patient feedback data. As a result, the updated
Cobelli model parameters can be fitted to the individual patient. The resulting model can be
used in future research to predict the outcomes of different insulin dosages and determine the
best treatment option to achieve desired glucose levels in diabetic patients. Consequently this
research forms the foundation for a personalized prescription tool to improve diabetic patient
care.

Keywords: insulin, glucose, diabetes, injection, model

Enclosures: (1) Cobelli Model Flow Chart
(2) Combined Cobelli Model Equation Layout
(3) Cobelli Parameter Spreadsheet
(4) Randomized Patient Data Matlab Code
(5) Parameter Sensitivity Testing Matlab Code
(6) Parameter Adaptation Matlab Code
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Understanding Insulin and Diabetes

Human cells use insulin to extract glucose from the bloodstream, using the simple sugar for
energy. The hormone insulin is analogous to a key that is needed to “unlock™ cells by attaching
to cell receptors, allowing glucose to enter. Malfunctions in the regulation of insulin and glucose
in the body can give rise to pathological conditions including both type I and type II diabetes.
Type I diabetes results when the pancreas does not produce enough insulin to assist the uptake of
glucose into cells. Type II diabetes is a condition in which cell receptors have decreased insulin
sensitivity and cannot use insulin to intake glucose properly. Both conditions result in abnormal
glucose levels in the blood stream, potentially resulting in complications including heart disease,
stroke, high blood pressure, blindness, kidney failure, and nervous symptom damage.

Both type I and type II diabetes are currently treated with insulin injection therapy to trigger
glucose uptake in the cells. The Juvenile Diabetes Research Foundation launched the Artificial
Pancreas Project in 2006 to push for the development of an artificial pancreas.” This implant
would work in the place of a type 1 diabetic’s failing pancreas, regulating blood glucose levels in
the blood by administering the appropriate dose of insulin.

Project Goals

This project will bridge the gap between current artificial pancreas research and clinical
application to improve treatment methods for both type I and type II diabetic patients. While the
development of an artificial pancreas is a desirable long-term goal, a physiologically accurate
glucose control model has immediate potential as a prescription tool for physicians to use. This
prescription tool will help physicians to better understand their specific patient’s condition and
determine the best course of insulin therapy needed to achieve healthy blood glucose levels.

Figure 1 outlines the research objectives in a flow chart format. First, the research will improve
the clinical relevance of an existing model of glucose dynamics which currently only accounts
for the influence of insulin that is naturally secreted from the pancreas. The improved model will
include additional insulin inputs currently used in injection therapy. The second objective is to
adapt the Cobelli model parameters to investigate a personalized approach to treatment, fine



tuning the model to best represent the patient’s condition. These two research steps will prepare
the combined Cobelli and Insulin models for future use in adaptive model predictive control,
building the foundation for a personalized prescription tool for physicians to use. The Juvenile
Diabetes Research Foundation states the “development of novel learning/patient specific
artificial pancreas control algorithms in closed loop control systems” as one of its top priority
areas for the fiscal year of 2013."This research will contribute to an individualized prescription
tool that physicians can use to better treat diabetic patients, while furthering the development of a
control algorithm that could be applied to a functioning artificial pancreas in the future.

Objectives to Achieve

Objective I:

Use existing
Cobelli Model Expand model
- represents toinclude
Glucose and slow and fast
Insulin in the acting insulin
body inputs

Objective lll:
Investigate
insulin input
prediction

Objective ll:
Adapt the
model
parameters

Figure 1: Research Objectives

Research Timeline

My first semester research goals were centered on developing a working understanding of the
Cobelli model, solving the Cobelli differential equations using Simulink, finding an appropriate
mathematical model of insulin injections to incorporate into the Cobelli model, and investigating
the Cobelli model parameter sensitivity to prepare for parameter adaption.

During second semester, a virtual patient was created using the Cobellii model with a
randomized set of model parameters. This generated patient data was used for analysis
throughout the research, as patient data from Anne Arundel Medical Center was obtained in
early April and could not be used in the project. Parameter sensitivity analysis results identified a
subset of the Cobelli model parameters that would be most effective in adapting the published
Cobelli diabetic patient parameters to fit the virtual patient data. Additionally, models of slow
and fast acting insulin injections were added to the adaptive Cobelli model. This adaptive model
will be useful in future research to create a personalized prescription tool to improve the
treatment of diabetic patients. The remainder of this report will describe the pertinent
background information and results of my work throughout the year.

Cobelli Background and Modeling

Cobelli et al. presented a nonlinear simulation model composed of glucose and insulin
subsystems and four unit process models which describe the kinetics and physiological events of



glucose digestion and absorption in key organs after a meal. They used a "triple tracer meal
protocol" that provided estimates of major glucose and insulin fluxes (i.e. flow rates) during the
course of a meal.” The model relates glucose and insulin fluxes to compartmental concentrations
in order to characterize the flow through each subsystem, using 28 differential equations to
represent glucose and insulin dynamics in a physiologically accurate manner. Cobelli’s model is
an appealing foundation for my research because a computer simulator of type 1 diabetes was
based on this model and approved by the FDA as a substitute to animal trials for preclinical drug
testing. "'

For the sake of brevity, only the differential equations characterizing the insulin subsystem will
be described further. The two-compartment insulin subsystem, displayed in Figure 2, describes
the response of the insulin masses in the liver (I; — Equation 1) and plasma (I, — Equation 2) to
insulin secreted by beta cells in the pancreas (S). Specifically, these masses vary as insulin is
utilized in the periphery (muscle and tissue) cells to assist in glucose uptake or is lost within the
liver. The two equations shown below describe the flow (change in mass over time) of insulin
through each compartment. Note that the dot notation indicates the derivative with respect to
time. The variablesm , m,, m,, and m, are rate parameters describing the exchange between the
liver and plasma insulin compartments as well as the rate at which insulin is either lost within the
liver or used in surrounding cells.

Secretion e Y my o .
i 1 I 1
(pancreas) I-' | .'I [ I )
liver | \ plasma |

L) 5 ;

b ~— / M _ -
Liver Degradation Periphery
m M
E (used)

Figure 2: Insulin Subsystem and Equations from Cobelli Model

L(t) =S(t) + (mzlp (t) — mlll(t)) — mgl;(t) (liver insulin) Equation 1

I'p(t) = (mlll(t) —my,l, (t)) —myl,(t) (plasma insulin) Equation 2

Before proceeding, I wanted to possess an in-depth understanding of Cobelli’s glucose and
insulin model. To do so, I created three reference documents including a block diagram relating
the Cobelli model subsystems (Enclosure 1), a similarly structured diagram outlining the
necessary equations from Cobelli’s original paper (Enclosure 2), and a chart of all model
parameters and their physiological meaning (Enclosure 3). MIDN 1/C Brandon Meek, a systems
engineering honors student working on a related capstone project, then used these reference
documents to build a Simulink model of the Cobelli equations. Simulink is a computer program
available at USNA that uses a block diagram (graphical) environment to solve differential
equations and simulate dynamic systems over time. Figure 3 shows the Simulink model
structure. Each block in this image is a subsystem containing the relevant subsystem equations.
The insulin subsystem is circled.
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Figure 3: Cobelli Simulink Model

The interior of the insulin subsystem is shown in Figure 4. The two circled integrator, (1),

N

blocks indicate that two differential equations are solved within the subsystem.

mé }
Constant

Figure 4: Simulink Insulin Subsystem

The scope allows the user to plot the plasma insulin mass over time and compare the results to

viii

those published in Cobelli’s paper.

The graph in Figure 5 represents the Simulink insulin data

as seen through the MATLAB scope after a patient is given a meal. As expected, the insulin
level increases to help transport the ingested glucose from the blood stream into cells to be used
for energy. This graph matches the insulin data published by Cobelli, indicating that the Cobelli
model can be accurately simulated and manipulated using Simulink code.




Plasma Insulin: Initial Cobelli Parameters
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Figure 5: Simulink Insulin Data

Once the Simulink Cobelli model was verified to match the published results, it was used to
create a “virtual patient” by randomizing the model parameters. Cobelli et al. published model
parameters for both healthy and diabetic patients.”™ The percent change between these values
was calculated, and the parameters were randomized within a range of plus or minus 10% of the
diabetic patient parameter value. Using this interval, multiple unique patient parameter sets could
be used to generate data using the Cobelli Simulink model. Figure 7 shows the simulation results
for the one meal using the original Cobelli parameters, as well as three different patients with
randomized parameter values.



Randomized Virtual Patient Glucose Data
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Figure 5: Virtual Patient Data
Objective 1: Improve Clinical Relevancy by Expanding the Cobelli Model

Diabetes patients are currently treated with both rapid-acting and long-acting insulin injections to
achieve effective glucose control throughout the course of a day. The characteristics of common
insulin analog injections are displayed below.”

Rapid Acting Onset Peak Duration
Humalog or Lispro | 15-30 min 30-90 min 3-5hr
Novolog or Aspart | 10-20 min 45-50 min 3-5hr
Apidra or 20-30 min 30-90 min 1-2.5 hr
Glulisine

Long Acting Onset Peak Duration
Lantus 1-1.5 hr None (steady) 20-24 hr
Levemir 1-2 hr 6-8 hr Up to 24 hr

Table 1: Common Insulin Injection Profiles




The Cobelli model must be modified to include both rapid-acting and long-acting insulin inputs
to the plasma insulin compartment. This modification will make the Cobelli model more
relevant to doctors considering the model as a potential prescriptive aid. The altered insulin
subsystem is shown in Figure 7.

Slow-acting
Insulin Injection

L 4

«" Fast-acting
Insulin

Secretion m, nsul
(pancrea_i) Injection
Liver Degradation Periphery

ms3

Figure 6: Insulin Subsystem with added injections

The original research proposal suggested the use of first order transfer functionswith differing
time constants and an appropriate time delay for rapid- and long-acting insulin injections, as
shown in Equation 3 and 4.

I5(s 1
Slow Acting Insulin Transfer Function 1751((5)) = P - (e~te%) Equation 3

Fast Acting Insulin Transfer Function Equation 4

In(s) Ts+1

However, further literature study revealed significant prior work on the subject of insulin analog
injection modeling. The literature trail showed that a single first order equation oversimplifies
the injection and absorption of insulin under the skin, through the capillary membrane, and into
the bloodstream. A review of four major papers resulted in the final representation chosen. My
findings are summarized below.

Similar to our proposal, Huang et al. presents a simple first order model to describe the dynamics
of impusive insulin injections.™ However, this model does not have separate compartments for
the tissue and blood stream with associated time delays. Next, a three compartment model
presented by Shimoda et. al. was considered.™ This model includes a separate injection depot
compartment, which is represented with a first order delay. However, the model only applies to
rapid acting insulin, as a first order delay is not enough to simulate the slow dissolving process of
long acting injections.

The most helpful paper throughout this literary search was a review of multiple insulin injection
models written by G. Nucci and C. Cobelli.™" In this paper, Cobelli dismisses the Shimoda



model because it was conceived in the 1980’s, before modern insulin analogs were available. A
more promising model presented by Trajanoski et. al. describes the breakdown of insulin analogs
from an original hexameric state to a dimeric state that can be absorbed into the bloodstream.
The model includes an imaginary “bound state” to represent the delayed dynamics of long acting
insulin injections. Cobelli praises this model for its chemical accuracy, dependency on both time
and injection depth, and inclusion of an inverse relationship between injection volume and
absorption rate. At the end of the review paper, Cobelli concludes by suggesting a simplification
of the Trajanoski model structure to reduce computational burden.

Jiaxu Li and Yang Kuang answered with their simplified version of Trajanoski’s model.™ The
model equations vary with time (rather than both time and injection depth), include a
biologically accurate Michaelis-Menten description of insulin degradation, and lessen the
computational burden of the original model. This model appears to be the best fit to incorporate
into Cobelli’s model of insulin and glucose dynamics: it describes the chemistry of insulin
injection absorption, appropriately accounts for compartmental delays, and has been reviewed
positively by Cobelli. The rapid (short) acting and long acting injection model equations shown
below were modeled in Simulink to be incorporated into the Cobelli model insulin equation. In
these equations, I;4¢q; represents the total plasma insulin mass, while I, and I, represent the

individual insulin injection concentrations. ™"
Short-acting insulin: Lispro
Hpase () = —p(H(t) — qD3(0)) (hexameric form) Equation 5

bD(t)

————— (dimeric form) Equation 6
1+ Itotal(t) f 1

Dfast(t) = p(H(t) - qDB(t)) -

rbD(t)

———— — d;lq5(t) (plasma concentration of fast insulin) Equation 7
1+Itotal(t)

Ifast(t) =
Hpqst(0) = injection amount; Dyqg(0) = 0;Ipq5¢(0) = Irge 0

Long-acting insulin: Glargine

/ _ Crmax ,
B'(t) = —kB(t) * 1T HO (bound form) Equation 8

Cmax

1+ H(t)

bD(t)
1+ Itotal (t)

Hgpow () = —p(H(t) - qD3(t)) + kB(t) * (hexameric form) Equation9

Do () = p(H(t) — qD3(t)) — (dimeric form) Equaution 10
rbD(t)
1+1totar(t)

Low(t) = — dilpa5e (t) (plasma concentration of fast insulin) Equation 11

B(0) = injection amount; Dg;0,,(0) = 0; L1, (0) = 5,0
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Equations 7 and 11 represent the plasma insulin concentration of fast and slow acting insulin
which Li and Kuang proposed. When the fast and slow acting insulin models were originally
added to the Cobelli plasma insulin equation (represented in Equation 2), the resulting equation
was as follows:

Lot (t) = (mlll(t) —ma,l, (t)) —myl,(t) (plasma insulin) + Ifc'lst(t)
+ Igow (t) Equation 12

However, there are two key differences between the Cobelli and Li/Kuang models that are
important to note. First, the insulin equations are represented using different units, uU/ml in
Li/Kuang and pmol/kg in Cobelli. Additionally, this difference in units reflects the fact that the
insulin injection equations represent insulin concentrations in the bloodstream, while the Cobelli
equations describe a mass of plasma insulin. To remedy these differences and accurately
combine the Cobelli and insulin injection models, the combined insulin equation was altered to
multiply each insulin injection term by the total plasma insulin volume in the Cobelli model (V1i).
This correction, along with additional unit conversions within the Li/Kuang insulin model
parameters, placed the combined equation terms consistently in pmol/kg to represent the
combined plasma insulin mass.

A few additional changes were made to the Li/Kuang insulin injection equations to form an
appropriate total plasma insulin equation. Originally, the proposed equations for the fast and
slow acting insulin injections (Equations 5 and 9) were dependent on the total plasma insulin
concentration, both in the insulin addition term and the negative insulin degradation term. The
equations were edited so that the addition of dimeric insulin is inversely proportional to the total
insulin mass, I;,;q; (t), but the degradation of insulin is dependent on the concentration of the
injection, Ir4q (). The initial condition of the slow and fast acting insulin concentration
equations (Equations 7 and 11 —If,,0 and I, 0) was originally set at 6 uU/ml to normalize the
patient’s plasma glucose level to basal conditions. This was because patients were given insulin
overnight to normalize their plasma glucose levels, isolating the effect of the insulin injections
and providing data that would prove useful in modeling the injection dynamics.”"™*"" When the
insulin injection concentrations were added to the total insulin mass in Equation 10, the insulin
initial conditions were set to zero. The insulin component of the Cobelli model will account for
any plasma insulin produced by the body, so no baseline initial condition is needed.

Ito.tal(t) = (mlll(t) - mZIp (t)) - m4-1p (t) (plasma insulin) + jfast(t) *V; + islow(t) * V;

Equation 10

The combined model was coded in Simulink and used to administer both slow and fast acting
insulin to a virtual patient over a 24-hour period. The patient received 40 units of slow acting
insulin at time zero, along with his first meal. He then received 8 units of fast acting insulin
along with his second meal 6 hours later. Here, 1 unit of insulin equals 6.94x 10° pmol/l. Figure
9 shows the resulting glucose levels of the patient, as compared to the same patient who received
no insulin or only the slow insulin injection at time zero. When slow insulin is administered, it
lowers the patient’s peak and resting glucose levels as shown by the red line graph. The fast
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insulin, administered along with meal two, creates an additional decrease in the blood glucose
level that could not be achieved with slow insulin alone. This is best seen by comparing the red
(slow and fast insulin) and green (slow insulin only) lines in in the second spike of glucose
concentration. In this case, the patient was given five times the amount of slow acting insulin as
compared to fast insulin, so it is not surprising that the fast acting insulin does not have a large
impact on the patient’s glucose levels.

Glucose Concentration: Slow insulin = 40 units, Fastinsulin = 8 units
300 .

280

260

5

220

8

Glucose (mg/dl)

5 8 8

— No slow insulin
Slow insulin only
Slow+Fast insulin

500 1000 1500
Time (min)

120

Figure 9: Combining Cobelli and Insulin Models

Figure 10 shows the insulin concentration for the same patient, as slow insulin is administered at
time 0 and fast insulin is administered six hours later. The injected insulin is necessary to help
the ingested glucose leave the blood stream and enter the cells following a meal. Focusing on the
valleys following each meal, the insulin injections prevent the patient’s insulin levels from
dropping as low as they would without injected insulin. These increased insulin levels assist in
glucose uptake, lowering plasma glucose levels between meals.
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Insulin Concentration: Slow insulin = 40 units, Fast insulin = 8 units
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Figure 10: Showing Insulin Concentration changes

This combined model seems to accurately represent the desired effect of injecting a patient with
external insulin: lowering blood glucose levels, particularly between meals. These results will
need to be compared to patient glucose readings over the course of insulin treatment to verify the
accuracy of the combined model.

Objective 2: Adapt the Cobelli Model Parameters

Once the Cobelli model had been verified with Simulink and combined with an appropriate
insulin injection model, my focus shifted to preparing to adapt the original Cobelli model
parameters to best fit the condition of an individual patient. The first step was to evaluate the
sensitivity of the glucose and insulin responses of the Cobelli model to parameter changes. This
analysis provided a subset of the most sensitive model parameters that would be most effective
in parameter adaptation to create a personalized Cobelli model. The MATLAB code in Enclosure
4 changes each of the 35 model parameters by incremental percentages of their original value,
runs the Cobelli Simulink model, and obtains the resulting glucose data. Then, the code
calculates the error between the altered and original response to compute the model’s sensitivity
to the parameter change. The average sensitivity was determined for each parameter using
equation 11.

» (altered — original)?
# readings 1

Sens = 100 = Equation 11

max(gluc) — min(gluc) i parameter change
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Several different methods of parameter sensitivity testing were used to ensure the proper
parameters were chosen for adaptation. The sensitivity was first calculated using error in
resulting glucose data, followed by the insulin data error, as well as a sum squared error
combining both glucose and insulin results. Four parameters (Fcns, gamma, Heb, and f) did not
change between healthy and diabetic patients in Cobelli’s paper, so these parameters will not be
adapted to fit patient data and have been removed from all data tables below. Table 2 shows the
parameters which were most sensitive when both insulin and glucose error were considered.

Parameter Parameter Description Average
Name Sensitivity
kpl EGP at zero glucose and | 10711.849
insulin
Vg Distribution volume of | 1538.5491
glucose
kp4 Amplitude of portal 888.2471
insulin action on liver
k1 Glucose rate parameter | 677.07393
(b/n plasma and tissue)
Vi Distribution volume of | 474.51345
insulin
m6 Rate parameter for 382.68959
Hepatic extraction
m4 Insulin rate parameter 284.53814
(periphery degredation)

Table 2: Parameter Sensitivity Results — Combining Insulin and Glucose Error

Since the parameter sensitivity is determined using glucose and insulin data, it is logical for the
most sensitive parameters to be involved with endogenous glucose production from the liver
(kp1 and kp4), parameters within the glucose subsystem (Vg, k1), or within the insulin
subsystem (Vi, m4, and m6).

After this sensitivity testing was conducted, additional sensitivity testing was designed to not
only increase the parameter values and determine resulting sensitivity, but to decrease the
parameter values as well. This sensitivity testing yielded the results shown in Table 3. These
results have overlapping sensitive parameters with those in Table 2, except for the three
parameters highlighted in blue.

Parameter | Parameter Description Average
Name Sensitivity

EGP at zero glucose and
kpl insulin 5777.668044
Rate parameter for
m5 Hepatic extraction 1722.260222
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Rate constant of intestinal
kabs absorption 977.5885681
keri Rate of grinding 795.9737116
Distribution volume of
Vg glucose 533.1015597
Amplitude of portal
kp4 insulin action on liver | 474.7515014
Glucose rate parameter
kl (b/n plasma and tissue) | 416.7587145
Rate parameter for
mo6 Hepatic extraction 344.0057034

Table 3: Parameter Sensitivity Results - Using + and - parameter changes

After this first two rounds of parameter sensitivity testing, it was decided that parameter
adaptation would be evaluated first by adapting the top five parameters from the combined
insulin and glucose sensitivity testing (kpl, Vg, kp4, k1, VI). Then, parameter adaptation would
be evaluated when ten parameters are adapted, including the top seven combined sensitivity
results as well as the three additional parameters highlighted in table 3.

The parameter adaptation code (Enclosure 5) is a Matlab script which uses an optimization
function to choose the best set of parameters to match patient glucose data. The script runs
through multiple iterations, trying different parameter sets within a determined set of upper and
lower bounds, solving the Cobelli model equations, and computing the sum squared error (or
cost) between the simulated data and the provided patient data. In this case, the patient data was
generated using a Simulink model with randomized parameters, as described before with the best
fit. Once the program can no longer lower the cost, it returns the best fit set of parameters. The
optimization function also returns the cost between the patient glucose data and the data
simulated using the chosen parameters. Here, the goal is to reduce the cost without adapting all
35 Cobelli model parameters, thus reducing computational burden.

Figure 11 shows the results of parameter adaptation in which all 35 Cobelli model parameters
were adapted to fit the randomized patient data. In this case, the glucose data simulated with the
adapted parameters (black line) and the patient data (blue line) completely overlap. This and the
extremely low calculated cost prove that adaptation was successful. However, the parameter
adaptation code ran for over 10 minutes before determining the optimal set of parameters. In
future research, parameter adaptation will be a portion of a larger input prediction routine, and it
is unreasonable to allow this much time for adaptation. These results confirmed the need to
choose a smaller set of parameters to more efficiently adapt the Cobelli model to fit patient data.



Gluc (mg/dL)

Next, the parameter adaptation code was written to adapt the top five sensitive parameters (as
determined from the combined insulin and glucose data) and hold all other parameters constant
at the Cobelli values. Doing so greatly increased the cost (from 0.217 to 961). To put the

Parameter Adantation Realilts: all 35 Parameters

320 T T T T
Diabetic Parameters: Cost = 1.21e+04
300 Patient H
Adapted Parameters: Cost= 0.217
280 S .
- N
\\
260 AN .
240 \ -
220 N\ il
\\
200 \ ]
\\
180 -
\\\
160 T
140 r r r r r
0 50 100 150 200 250 300
Time (min)

Figure 11: Adapting all 35 parameters
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resulting cost in perspective, I compared the parameter adaptation cost (961) to the cost (or sum

squared error) between the patient data and the Cobelli model glucose response using the

published diabetic patient parameters. The adapted cost is still less than 8% of the cost calculated
using the data generated from the original Cobelli parameters; These results are shown in Figure

12 below.
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Parameter Adaptation Results: Top 5 Parameters

320 L L L’ L L
Diabetic Parameters: Cost = 1.21e+04
300 Patient —
Adapted Parameters: Cost = 961
280 — -
N
260 AN .
—
3 \
S 240 N\ -
£
5 220 .
(U]
200 N\ .
\\\
180 -
\\\
160 T
140 r r r r r
0 50 100 150 200 250 300

Time (min)

Figure 12: Adapting top 5 parameters (glucose and insulin sensitivity)
The next round of parameter fitting changed ten parameters to fit the randomized patient data. As
shown in Figure 13, the cost (161) is significantly reduced by allowing just five more parameters
to adapt and fit the patient data. This new cost is 16.7% of the cost resulting from adapting only
the top five parameters. The code ran in a reasonable amount of time, suggesting that this is a
reasonable number of parameters to adapt in order to personalize the Cobelli model.
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Parameter Adaptation Results: Top 10 Parameters
300 U C L’ C C
Diabetic Parameters: Cost = 1.54e+03
Patient
Adapted Parameters: Cost = 161

250

Gluc (mg/dL)

200

150 [ [ [ [ r
0 50 100 150 200 250 300
Time (min)

Figure 13: Adapting top 10 Parameters

After these first two rounds of parameter adaption, we revisited the parameter sensitivity testing
with a different approach to see if the adaptation results could be improved. This time, instead of
altering each parameter by a percentage of its original value, we based the parameter changes on
the percent change between the healthy and diabetic value for each parameter. This approach
was designed to emulate the method we used to generate the randomized patient data, by altering
the original Cobelli diabetic value by a random percentage of the percent change between
healthy and diabetic parameter values. Each parameter was changed by positive and negative 5%
and 10% of the percent change between healthy and diabetic parameter values. The sensitivity
was then calculated using the resulting glucose data, and the top five and ten parameters were
chosen for additional rounds of adaptation testing.

Table 4 summarizes the parameter adaptation results for all 5 scenarios: adapting all 35
parameters, the top 5 parameters from the combined glucose and insulin data, top 10 parameters
(including positive and negative parameter changes), the top 5 “new” parameters chosen by
considering the percent change in parameter values, as well as the top 10 parameters from the
same round of parameter sensitivity testing. The first two columns compare the glucose cost
calculated using the adapted parameter values to the cost generated using the original diabetic
Cobelli parameter values. The new method of parameter sensitivity testing picked out parameters
which caused an increased cost as compared to the original method. The original top ten
parameters are therefore the most effective in adapting to personalize the Cobelli model to fit
patient glucose data.
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The third and fourth columns of Table 4 record the sum of the percent error between the adapted
and original patient parameters, as well as the percent error between the Cobelli parameters and
actual patient parameters. This is a potentially helpful analysis tool because it shows how close
the parameters were to matching the randomized patient values. All five cases have very low
parameter error percentages, making this a difficult tool to use to distinguish between adaptation
methods. Additionally, the parameter percent error did not always decrease when the parameters
were allowed to adapt. The most important metric to use when analyzing parameter adaptation
effectiveness is the glucose cost, because patient glucose data will be used to personalize the
Cobelli model and determine insulin injections in any prescription tool. The individual adapted
parameters may not come closer to the patient parameter values, but this is of little importance as
long as the simulated glucose data fits the provided patient data with as low of cost as possible.

%error

Adapted glucose |Diabetic glucose |% error adapted |diabetic

cost Cost parameter parameter
1 meal, all 35 parameters 0.217 12100 2.07939675 1.983223512
1 meal, 5 parameters 961 12100 1.807557703 1.828632793
1 meal, 10 parameters 119 12100 1.426699217 2.491692
1 meal, 5 new parameters 1630 12100 0.686665424 8.012487486
1 meal, 10 new parameters 1046.7 12100 1.520362334 0.627409478

Table 4: Summarizing Adaptation Results
Conclusion and Future Directions

The two main objectives of this research project were accomplished over the course of the year:
the Cobelli model was combined with physiologically accurate models of slow and fast acting
insulin injections. The parameters of the Cobelli model equations were adapted to personalize the
model, fitting virtual patient glucose readings. With access to patient data from Anne Arundel
Medical Center, this combined model can be fit to real patient glucose data to assess parameter
adaptation success and verify the model’s validity for use as the foundation of a personalized
prescription tool. Pending patient data confirmation, this combined adaptive model is prepared
for the application of model predictive control to determine appropriate insulin injection
treatment methods for diabetic patients.

The topic of Diabetes has become a multigenerational Trident Research focus within the Systems
Engineering Department. MIDN Bryan Weisberg from the class of 2013 investigated the
addition of glucagon dynamics to the Cobelli model. I built upon his knowledge of the Cobelli
model to incorporate insulin input dynamics, create a virtual patient, and apply parameter
adaptation to fit randomized patient data. Next year, 1/C Alvin Abes will apply predictive control
to this adaptive combined model, working to build a personalized prescription tool which can
assist physicians in treating diabetic patients. These continued research efforts under the
instruction of Professor Richard O’Brien will further the development of a control algorithm
which will improve our understanding of diabetes, improve patient treatment methods with the
introduction of mathematical prescription tools, and contribute to the development of an artificial
pancreas in the future.
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%kncl osure 4 - Random zed Virutal Patient Data
% r eat es Random patient data for three patients

% %show original cobelli patient data

run Di ab_Par anet er _Vect or

run Parameter _initialization; %icks off values and creates vari abl es
sim Cobel I'i _correct % uns Cobelli Simulink node

figure (1)

plot(tine,gluc)

clear tinme gluc

%hange each parameter by a random percent age

%set acceptable limts for the different paraneters (use 10% of difference
%bet ween heal thy and diabetic in cobelli paper) %orrected to be centered
%ar ound di abetic val ue

[imt = [0.026174497

0. 054761905

. 011267606

. 028571429

. 026022305

025

. 049868074

. 02808321

. 027881041

. 042205323

. 020288248

02
. 005263158
. 147826087
02

. 116666667
. 020588235
. 002608696
. 088888889
. 012621359
2

08

. 021374046
. 01969697

. 046236559
0265625

. 051611935
. 060595238
. 132323232
. 284615385
12

OO0 000000000000000000000000O00O0O0O0O0
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0
0
1
for p =1:3
change = zeros(37,1);
for i = 1:37
change(i) = (2*(limt(i)).*rand(1,1)-limt(i)); %reates a vector of 35 randon
end

New_Param = zeros(| engt h(Paraneters), 1);

for i = 1:37
New _Paran{i) = (l+change(i))*Paranmeters(i); %mwodify all paraneters, using
end

Paranmeters = New Param % eset paraneters vector to random zed paraneters

run Parameter _initialization; %nitialize paraneters again w th new val ues
sim Cobel Ii _correct

figure (p+1)

plot(tine, gluc);

xl abel (" Tine (mn)');

yl abel (' Pl asma G ucose Concentration (ng/dl)"');

if p==1
savefile = '"Patientl 3neals correct. mat';
title('Plasma G ucose: Patient 1 Paraneters');
end
if p==2
savefile = 'Patient2 3neals correct. mat';
title('Plasma G ucose: Patient 2 Paraneters');
end
if p==3
savefile = 'Patient3 3neals correct. mat';
title('Plasma G ucose: Patient 3 Paraneters');
end
save(savefile,' Parameters', 'gluc', '"time') %tore glucose response
end

%l ot results




clear al

hol d on

| oad Patientl 3neals_Correct
plot(tinme, gluc, 'r")

hol d on

xlabel (" Tine (mn)")

yl abel (' G uc (ng/dL)")

clear tinme gluc

| oad Patient2 3neals_Correct
plot(tine,gluc, g')

clear tinme gluc

| oad Patient3 _3neals_Correct
plot(tine,gluc, "b")

| egend(' Patient 1', '"Patient 2', 'Patient 3');

Error using Random zed Data Corrected (line 7)
Unabl e to | oad bl ock diagram' Cobelli _correct

Published with MATLAB® R2014a
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% Encl osure 5 Part 1- Paraneter sensitivity testing code

% changes each paranmeter one a tinme, runs cobelli nodel
% and cal cul ates root nean squared error in the glucose output
% (a simlar code conputes and saves the error based on insulin data)

run Parameter _vector; % creates normal paranmeter vector and defines each specific
run Parameter _initialization; %icks off values and creates vari abl es

sim Cobel |i 2 % uns Cobelli Simlink node

savefile = "init_var.mt';

save(savefile, "gluc', "tine') Ustore original glucose response

init_gluc = gluc;

%hange each paranmeter one at a tine

changes [0.1, 0.2, 0.3, 0.4 ,0.5 0.6, 0.7, 0.8, 0.9, 1]; %hange by 10% i ncrene
results zeros(length(ins), ((length(changes)*|ength(Paranmeters))+1)); %reate sp
results(:,1) = tinme;

New_Param = zeros(| engt h(Par anet ers), | engt h(changes));

Sens = zeros((l ength(Paraneters)-2),I|ength(changes));

for i = 1:(l ength(Paraneters)-2)
for j = 1:1ength(changes)
try

New _Paran(i,j) = (1+changes(j))*Paraneters(i); %mwodify one paraneter at a
%reates a matri x where each row represents a different paraneter
%and the colums show t he changes nade
run Parameter_vector; % eset parameter vector from previous changes
Paraneters(i) = New Paran(i,j); % eset paranmeter vector with new val ue
run Parameter _initialization; %nitialize paraneters again
sim Cobel li2 % un Cobelli nodel with new paraneters
results(:, ((i-1)*10+j+1)) = ins; %reate matrix of glucose results: 1st c¢
gluc_error = 100*sqrt(sum((gluc-init_gluc).”2)/length(gluc))/(max(gluc)-m
Sens(i,j) = gluc_error/changes(j); %imlar to New Param- shows sensitivi
i
cat ch
di sp(' Ch No! An error occured - execution will continue') %use a 2 wh
Sens(i,j) = 2;

end
end
end
savefile = '"Resul ts. mat'
save(savefile, '"results', 'Sens') %ave glucose results in matlab file

Error using run (line 55)
Par amet er _vect or not found

Error in Encl _4 Paraneter_Sensitivity (line 7)
run Paranmeter_vector; %creates nornmal paraneter vector and defines each s




29

Published with MATLAB® R2014a




30

%kncl osure 5 Part 2: Analyzing Sensitivity Results
%onbi nes paraneter sensitivity based on both insulin and gl ucose out put data

% oad results from paranmeter sensitivity code
| oad(' C:\ User s\ n151656\ Docunent s\ MATLAB\ Sens_ins_full.mt")

| = Sens;
| oad(' C:\ User s\ n151656\ Docunent s\ MATLAB\ Sens_gl uc_ful | . mat")
G = Sens;

% find the average sensitivity for each insulin and gl ucose

maxi mum| = zeros(35, 2);

avg | = zeros(35,2);

for i =1:35
maxi mum | (i, 1)
avg I (i,1) =1i;
maxi mum | (i,2) = max(1(i,:));
avg I (i,2) = mean(l(i,:));

end

maxi mum G = zeros(35, 2);
avg_G = zeros(35,2);
for i = 1:35
maxi mum i, 1) =i
avg  i,1) =1i;
maxi mum i, 2) = max(qi,:));
avg gi,2) = mean(qi,:));
end

%ort results

maxi mum| (:, 3:4) = sortrows(maxi muml,-2); %olums 3 and 4 will show sorted valu
avg I (:, 3:4) = sortrows(avg_l,-2); %olums 3 and 4 will show sorted val ues
maxi mum G :, 3:4) = sortrows(maxi mumG -2); %olums 3 and 4 will show sorted valu
avg @ :, 3:4) = sortrows(avg_G -2); %olums 3 and 4 will show sorted val ues

%onbi ne insulin and glucose sensitivity

Conb_max = zeros(35, 2);

Conb_avg = zeros(35, 2);

for i =1:35
Conmb_nex(i, 1)
Conmb_avg(i, 1)
Conb_nex(i, 2)
Conmb_avg(i, 2)

i

i

sqgrt ((maxi mum i, 2)) " 2+(maxi mum (i, 2))"2);
sgrt((avg_ i, 2))"2+(avg_I(i,2))"2);

end

%sort results

Conmb_max(:, 3:4) = sortrows(Conb_nax,-2); %olums 3 and 4 will show sorted val ues
Conb_avg(:, 3:4) = sortrows(Conb_avg,-2); %olums 3 and 4 will show sorted val ues
%save in excel and |abel colums

savefile = "Sensitivity Results duc_Ins';

col _header = {' Paranmeter Nunmber', 'Max Sensitivity',6'Paranmeter Nunmber', 'Max Sens

row_header(1:35,1) = {'Vg', "k1', "k2', "kel', "ke2', "VI', 'ml', 'n2', 'md', 'nb
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xI swite(savefile, Comb_max, 1, 'B2');
xI swite(savefile, col_header, 1, 'Bl');
xI swite(savefile, row_header, 1, 'A2');

col _header = {' Paranmeter Nunmber', 'Avg Sensitivity','Paranmeter Nunmber', 'Avg Sens
xI swite(savefile, Conmb_avg, 2, 'B2");

xI swite(savefile, col_header, 2, 'Bl');

xI swite(savefile, row_header, 2, 'A2");

Error using | oad
Unable to read file 'C \Users\m51656\ Docunent s\ MATLAB\ Sens_ins_full . mat'

Error in Encl _4 Sensitivity Analysis (line 5)
| oad(' C:\ User s\ n151656\ Docunent s\ MATLAB\ Sens_ins_full.mt")

Published with MATLAB® R2014a
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$Enclosure 6 Part 1: Parameter Adaptation Main File
% This is the top-level script. It calls the optimization
function fmincon and makes all variable declarations necessary
for this call. Those variable declarations include: 1) The
function handle for the "management" function (the function to
be called), 2) The upper and lower bounds for each parameter
being fit, 3) Initial condition vector for the parameters.
These elements must be placed in the appropriate "spot" in

% the fmincon function call. (Type "help fmincon" in Command
Window to see full documentation and order of arguments. Square
braces [] are used to give no input to a specific function
argument. Order matters, and fmincon assigns inputs to each
argument in the order received, so use [] to skip specific
arguments and enter later ones.)

% Function handle for function to be called
f = @(p)Dilks model sim 10 (p);

% Lower and upper bounds of parameters (10 parameters to be
fitted: Vg,

% k1, Vi,m4, m5, m6, kabs, kgri, kpl, kp4) (1, 2, 6, 9, 10, 11,
15, 16, 22, 25)

IB = [1.451 0.0397 0.039 0.2615 0.05038 0.79533 0.0196 0.04557
3.051 0.076927];

UB = [1.529 0.0443 0.041 0.2765 0.05482 0.82827 0.0264 0.04743
3.129 0.080287];

% Best initial guess
p0O = [1.49 0.042 0.04 0.269 0.0526 0.8118 0.023 0.0465 3.09
0.0786];

% Calling the optimization function
[P cost] = fmincon(f,p0,[],[],[],[],LB,UB)

save Parameter Adaptation Results new P cost
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Q

% Enclosure 6 Part 2: Management Function (adapts parameters)

% This is the "management" function. It handles passing the
candidate

% parameter vector to the model and computing the cost based on
the

% returned model simulation.

o\©

function F = Dilks model sim 10 (p)

run Diab Parameter Vector %load original Diabetic Cobelli
parameter values

index = [1, 2, 6, 9, 10, 11, 15, 16, 22, 25]; %specific
parameters to be updated

for 1 = l:length(index)

Parameters (index(i)) = p(i); %update only the parameters we're
interested in
end

run Param Adap Setup %assigns new parameter values and creates
new Initial conditions
%uses patient data to create time vector for data points

Parameters (38) = Ib;
Parameters (39) = Sb;
Parameters (40) = h;
Parameters (41) = meal;

Q

% Printing the parameter vector chosen by fmincon each
interation

P

% Solving the differential equation (running the model)
[time, Cstates] =

ode45 (€Cobelli, T data,InitCond', [],Parameters);

gluc = Cstates(:,9)/Vg;

% Calculate the cost of this parameter vector, p, by comparing
simulation

% to data at the same time points. Print this value each
iteration.

F = sum((gluc-data) .”2);



$Enc
%Set
vect

$Pic

losure 6 Part 3: Setup file for Parameter Adaptation

S up parameter variables, initial conditions,
or

k off Parameters for use in Simulink Model

Tstep = 0.01;

Q

o

Vg
k1l =
k2 =

¢}

o

(¢}

kel
ke?2

[

o

Vi =
ml
m2
m4d =
mb5
m6 =
HEDb

ki =

Q

o

Fcns
vmO
Vmx
KmO
P2U

o

K:
alph
Beta

Glucose Kinetics

= Parameters (1) ;

Parameters (2) ;
Parameters (3) ;
Renal Excretion
= Parameters (4);
= Parameters(5);
Insulin Kinetics
Parameters (6),; %note: Vi in Weisberg
Parameters(7);
Parameters (8);
Parameters (9);
Parameters (10) ;
Parameters (11);
= Parameters (12); % where 1s this used?
Rate of Appearance - Gastro Intestinal Tract
= Parameters (13);
Parameters (14);
Parameters (15);
= Parameters (16)
Parameters (17
Parameters
Parameters
Parameters ;
Parameters ) ;
Endogenous Production - Liver
Parameters (22) ;
= Parameters (23);
= Parameters (24);
= Parameters (25);
Parameters (26) ;
Utilization - muscle and adipose tissue
= Parameters (27);
= Parameters (28);
Parameters (29) ;
= Parameters (30);
= Parameters (31)
Secretion
Parameters (32);
a = Parameters (33);

4

4

)
18);
19);
20)
21

(
(
(
(

4

and data time

= Parameters(34); %note: different than weisberg

34
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gamma = Parameters(35); %note: different than weisberg
th = Parameters (36);

o\©

Insensitive Parameters
BW = Parameters (37);
D = Parameters(38);

o\°

o\©

% Prof O'Brien change 18 Nov
BW = Parameters (36);
D = Parameters(37);

%Basal Parameters for Cobelli Model: (initial conditions)
% Insulin

Sb = (m6 - HEb)/mb5;

m3b = (HEb*ml)/ (1-HEb) ;

matrix = [ml+m3b, -m2; -ml, m2+m4d];

i matrix = matrix”-1*[Sb; 0];

Ilb = 1 matrix(1l);

Ipb = 1 matrix(2);

Ib = Ipb/Vi;

Ipob = Sb/gamma;

% Glucose

Ipob = Sb/gamma;

syms Gtb Gpb EGPb %$recognizes unknown variables as symbols
%assuming Gpb > Ke2

S1 = 'kpl == EGPb + kp2*Gpb+kp3*Ib+kpd*Ipob'; %$Equation 12
S2 = 'EGPb == Fcns + (Vm0*Gtb)/ (Km0+Gtb) + kel* (Gpb - ke2)';
$Equation 14, 15, 27

S3 = "(Vm0*Gtb) / (Km0+Gtb) = kl*Gpb - k2*Gtb'; %$Equation 1

S Gluc = solve(Sl, S2, S3, Gtb, Gpb, EGPb); Sreturns a
structure with solved equations

tmp = double (subs (S _Gluc.Gtb)); %substitute in known parameters
Gtb = tmp(2); % pick out positive solution

tmp double (subs (S _Gluc.Gpb)) ;

Gpb = tmp(2);

tmp = double (subs (S Gluc.EGPb)) ;

EGPb = tmp (2);

if (Gpb<=ke2) %checks if Gpb < ke2 - if so, need to change
equations
clear Gtb Gpb EGPDb;
syms Gtb Gpb EGPb;

S1 = 'kpl == EGPb + kp2*Gpb+kp3*Ib+kpd*Ipob'; %$Equation 12

S2 = '"EGPb == Fcns + (Vm0*Gtb)/ (Km0+Gtb) '; %$Equation 14,
15, 27

S3 = '"(Vm0*Gtb) / (Km0+Gtb) = kl*Gpb - k2*Gtb'; S$Equation 1



S Gluc = solve(Sl, S22, S3, Gtb, Gpb, EGPb); S%returns a

structure with solved equations

tmp = double (subs (S Gluc.Gtb)); %substitute in known
parameters

Gtb = tmp(2); % pick out positive solution

tmp = double (subs (S Gluc.Gpb)) ;

Gpb = tmp(2);

tmp = double (subs (S Gluc.EGPb));

EGPb = tmp(2);
end

% Prof O'Brien edit 18 Nov
Gb = Gpb/Vg;
h = Gb;

$ meal at t=1

meal = 1;

InitCond = zeros(1l2,1); %initial values for all states
InitCond(l) = D; %0stol

InitCond(2) = 0; %0sto2

InitCond(3) = 0; %Qgut

InitCond(4) = Ib; %Il

InitCond(5) = Ib; %Id

InitCond(6) = Ipb; %Ip

InitCond(7) = Ipob; %Ipo - find this!
InitCond(8) = 0;%X

InitCond(9) = Gpb; %Gp

InitCond(10) = Gtb; %Gt

InitCond(11l) = 0; %Y

InitCond(12) = Ilb; %Il

Q

load Patientl correct data % load random patient data
srecord what the original patient parameters were for
verification

%original parameters: 1.4636, 0.0408, 0.0394, 3.0783, 0.0798

36

% pick off specific time points from the data - glucose readings

every 20

% min (15 readings total)

T data = zeros(1l6,1);

data = zeros(lo,1);

T data(l) = pat time(1l);

data(l) = pat gluc(l);

for 1 = 1:15
T data(it+l) = pat time (i*20*1000)
data(i+l) = pat gluc(i*20*1000);

end
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%$Enclosure 6 Part 4: Cobelli Model Equations
$runs the cobelli model using an ODE solver

%inputs:

St=current time

%$state=current state of tracked variables

sParameters=parameter vector

%$inputs = 2 row vector of insulin and glucagon injection amounts

function stateReturn = Cobelli(t, state, Parameters)

O O

%% plucks off parameters, assigns variable names, creates
initial conditions
sPick off Parameters for use in Cobelli model

% Glucose Kinetics
Vg = Parameters(l);

kl = Parameters (2);

k2 = Parameters (3);

% Renal Excretion
kel = Parameters(4);
ke2 = Parameters(5);

% Insulin Kinetics
Vi = Parameters(6);

ml = Parameters(7);

m2 = Parameters(8);

m4 = Parameters (9);

m5 = Parameters (10);
m6 = Parameters(1l1l);
HEb = Parameters(12);
% Rate of Appearance - Gastro Intestinal Tract
kmax = Parameters (13);
kmin = Parameters(14);
kabs = Parameters(15);
kgri = Parameters(16);
f = Parameters (17);

a = Parameters(18);

b = Parameters (19);

c = Parameters (20);

d = Parameters(21);

% Endogenous Production - Liver

kpl = Parameters (22);
Parameters (23) ;

-
el

N
Il



kp3 = Parameters(24);
kp4 = Parameters (25);

ki = Parameters (26) ;

% Utilization - muscle and adipose tissue
Fcns = Parameters (27);
VvmQ = Parameters (28);
Vmx = Parameters (29);
Km0 = Parameters (30);
p2u = Parameters(31);

% Secretion

K = Parameters (32);
alpha = Parameters(33);
Beta = Parameters(34);
gamma = Parameters (35);

% Prof O'Brien change 18 Nov
BW = Parameters(36);
D = Parameters(37);

Ib = Parameters (38);
Sb = Parameters (39);
h = Parameters (40);
meal = Parameters (41);

%% State Vector
%Rate of Appearance
Ostol = state(l); Swhere meal input is implemented as initial
condition
Qsto2 = state(2);
Qgut = state(3);

Il = state(4);

Id = state(5); %delayed insulin signal

Ip = state(6);%plasma insulin concentration

Ipo = state(7);

X = state(8); %interstitial insulin (muscle and adipose)

Gp = state(9);
Gt = state(10);
Y = state(1l1l);
I1 = state(12);

%% Model Equations %does the order of these equations matter?
%Rate of Appearance
Osto=Qstol+Qsto2;
KemptQsto=kmin+ (kmax-kmin) /2* (tanh (a* (Qsto-b*D) ) -tanh (c* (Qsto-
d*D)) +2) ;
dQstol=-kgri*Qstol;
dQsto2=-KemptQsto*Qsto2+kgri*Qstol;



dQgut=-kabs*Qgut+KemptQsto*Qsto2;
Ra=f*kabs*Qgut/BW;

sLiver

I=Ip/Vi;

dIl=-ki* (I1-1I);

dId=-ki* (Id-I1);
EGP=kpl-kp2*Gp-kp3*Id-kpd*Ipo;

%Muscle and Adipose Tissue
dX=-p2u*X+p2u* (I-Ib) ;
VmX=vVm0+Vmx*X;

Uid=VmX*Gt/ (Km0+Gt) ;
Uii=Fcns;

%Glucose Kinetics
if (Gp>ke2)

E=kel* (Gp-ke2);
else

E=0;
end
dGp=EGP+Ra-Uii-E-kl1*Gp+k2*Gt;
dGt=-Uid+kl1*Gp-k2*Gt;
G=Gp/Vg;
dG=dGp/Vg;

%$Pancreas
%$static secretion
if (Beta* (G-h) >=-Sb)
dY=-alpha* (Y-Beta* (G-h));
else
dY=-alpha*Y-a*Sb;
end

sdynamic secretion
if (dG>0)

Spo=Y+K*dG+Sb;
else

Spo=Y+Sb;
end

dIpo=-gamma*Ipo+Spo;
S=gamma*Ipo;

%Insulin Dynapics
HE=-m5*S+m6;
m3=HE*ml/ (1-HE) ;
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dIl=-(ml+m3) *I1+m2*Ip+S;
dIp=- (m2+m4) *Ip+ml*I1;

%% return
stateReturn=[dQstol;dQsto2;dQgut;dIl;dId;dIp;dIpo;dX;dGp;dGt;dY;
dIl];
end

%this function returns state derivatives and uses them and
the current

%state to determine the next state
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